
matemati
a di basePasquale L. De AngelisEser
izi relativi al 
apitolo XVNel seguito sono riportati al
uni eser
izi utili a veri�
are la qualità della
onos
enza a
quisita sugli argomenti sviluppati nel 
apitolo XV del volume.Si 
onsiglia 
aldamente di a�rontarli solo dopo aver studiato l'intero 
api-tolo, aver 
ompreso gli esempi ivi riportati e risolto gli eser
izi di 
ontrollosuggeriti.1. Valutare le derivate parziali prime della funzione:
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.2. Valutare le derivate parziali prime della funzione:
f(x, y) = cos x sen y + cos(x+ y).Risposta:
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x+ y) .4. Valutare le derivate parziali prime della funzione:
f(x, y) = ex+2y cos(2x+ y).Risposta:
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(x, y) = 2ex+2y cos (2x+ y)− ex+2y sen (2x+ y) .5. Valutare le derivate parziali prime della funzione:
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Capitolo XV 37. Valutare le derivate parziali prime della funzione:
f(x, y) = x log(x3y + 4y).Risposta:
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Capitolo XV 411. Cal
olare l'hessiano della funzione:
f(x, y) = xey.Risposta: L'hessiano della funzione f(x, y) è il determinate della ma-ri
e formata 
on le sue derivate parziali se
onde. Risulta:
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= −e2y.12. Valutare la presenza di minimi o massimi relativi per la funzione;:
f(x, y) = x(ey − 1).Risposta: Le derivate parziali primi della funzione f(x, y) sono:
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ontemporaneamente, solo nell'origine.L'hessiano della funzione f(x, y) 
oin
ide 
on quello dell'eser
izio 11.:
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= −e2y.Si

ome l'hessiano è sempre minore di zero, nell'origine la funzione nonpresenta né un massimo né un minimo relativo; l'origine è punto di selladella funzione.


